Brain Tumor is basically the unusual growth of some new cells found in the brain. This can happen in any area of the brain. Tumor are categorized by finding the origin of the cell which has tumor and if the cells are cancerous or not. Segmentation process is carried out to find if brain tumor exists or not, then the response of the patient to the tests performed is collected, different therapy sessions and also by creating models which has tumor growth in it. This one is different from the other types of tumor. Anyone can suffer from this disease. Primary tumors are basically Benign or Malignant. Here, we propose CNN Convolutional Neural Network based approach for improving accuracy. It also have capacity to detect certain features without any interaction from human beings. With the help of this model it classifies whether the MRI brain scan has tumor or not. There are other different algorithms, but this paper shows that CNN gives more accuracy than the rest. This model gives validation accuracy between 77 85 . gives more precise and accurate results. CNN also let us to train large data sets and cross validate results, hence the most easy and reliable model to use.
by Anagha Jayakumar | Mehtab Mehdi "Brain Tumor Detection using Neural Network"
Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-5 | Issue-1 , December 2020,
No comments:
Post a Comment