Application of Exponential Gamma Distribution in Modeling Queuing Data - International Journal of Trend in Scientific Research and Development

IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas. For any further information, feel free to write us on editor.ijtsrd@gmail.com

Monday, 24 February 2020

Application of Exponential Gamma Distribution in Modeling Queuing Data


There are many events in daily life where a queue is formed. Queuing theory is the study of waiting lines and it is very crucial in analyzing the procedure of queuing in daily life of human being. Queuing theory applies not only in day to day life but also in sequence of computer programming, networks, medical field, banking sectors etc. Researchers have applied many statistical distributions in analyzing a queuing data. In this study, we apply a new distribution named Exponential Gamma distribution in fitting a data on waiting time of bank customers before service is been rendered. We compared the adequacy and performance of the results with other existing statistical distributions. The result shows that the Exponential Gamma distribution is adequate and also performed better than the existing distributions. 


by Ayeni Taiwo Michael | Ogunwale Olukunle Daniel | Adewusi Oluwasesan Adeoye ""Application of Exponential-Gamma Distribution in Modeling Queuing Data""

Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-2 , February 2020,

URL: https://www.ijtsrd.com/papers/ijtsrd30097.pdf

Paper Url : https://www.ijtsrd.com/mathemetics/statistics/30097/application-of-exponential-gamma-distribution-in-modeling-queuing-data/ayeni-taiwo-michael

callforpaperlifesciences, lifesciencesjournal, researchpapers

No comments:

Post a Comment

Ad