A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training Survey - International Journal of Trend in Scientific Research and Development

IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas. For any further information, feel free to write us on editor.ijtsrd@gmail.com

Tuesday, 28 January 2020

A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training Survey


Sign Language SL is a medium of communication for physically disabled people. It is a gesture based language for communication of dumb and deaf people. These people communicate by using different actions of hands, where each different action means something. Sign language is the only way of conversation for deaf and dumb people. It is very difficult to understand this language for the common people. Hence sign language recognition has become an important task. There is a necessity for a translator to communicate with the world. Real time translator for sign language provides a medium to communicate with others. Previous methods employs sensor gloves, hat mounted cameras, armband etc. which has wearing difficulties and have noisy behaviour. To alleviate this problem, a real time gesture recognition system using Deep Learning DL is proposed. It enables to achieve improvements on the gesture recognition performance. 


by Jeni Moni | Anju J Prakash ""A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training: Survey""

Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue-2 , February 2020,

URL: https://www.ijtsrd.com/papers/ijtsrd30032.pdf

Paper Url : https://www.ijtsrd.com/engineering/computer-engineering/30032/a-deep-neural-framework-for-continuous-sign-language-recognition-by-iterative-training-survey/jeni-moni

callforpapertechnology, technologyjournal

No comments:

Post a Comment

Ad