A Hybrid Apporach of Classification Techniques for Predicting Diabetes using Feature Selection - International Journal of Trend in Scientific Research and Development

IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas. For any further information, feel free to write us on editor.ijtsrd@gmail.com

Monday, 26 August 2019

A Hybrid Apporach of Classification Techniques for Predicting Diabetes using Feature Selection


Diabetes is predicted by classification technique. The data mining tool WEKA has been developed for implementing Support Vector Machine SVM classifier. Proposed work is framed with a specific end goal to improve the execution of models. For improving the classification accuracy Support Vector Machine is combined with Feature Selection and percentage Split. Trial results demonstrated a serious change over in the current Support Vector Machine classifier. This approach enhances the classification accuracy and reduces computational time. 


by S. Jaya Mala ""A Hybrid Apporach of Classification Techniques for Predicting Diabetes using Feature Selection""

Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5 , August 2019,

URL: https://www.ijtsrd.com/papers/ijtsrd27991.pdf

Paper URL: https://www.ijtsrd.com/computer-science/data-miining/27991/a-hybrid-apporach-of-classification-techniques-for-predicting-diabetes-using-feature-selection/s-jaya-mala

call for paper physics, ugc approved journals in commerce, physics journal

No comments:

Post a Comment

Ad